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Introducion

@ What is MDS? A technique for visualizing the similarity or
dissimilarity of data points in a low-dimensional space.

o Key Features:

Dimensionality Reduction: Transforms complex, high-dimensional data
into a simpler, visually interpretable form (2D or 3D).

Distance Preservation: Aims to retain the original distances between
data points as accurately as possible.

@ Why Use MDS? for data visualization and exploratory data analysis,
It helps in understanding patterns and relationships in data.
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The basic idea of MDS

e Given

© a set of n objects

@ the distances/dissimilarities d;; between them

@ We want to find points in a lower dimensional space whose distances
d;; are as close as possible to the d;;.

o If all distances of the original objects are quantitative in nature, this in
endeavour is more straightforward, since their distances are easily
measured by a metric such as the euclidean distance — metric MDS

@ In other cases (quantitative distances), one needs to resort to more
general dissimilarity measures to get the d;;s — non-metric MDS
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Metrische MDS

Metric MDS
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Metric MDS

The metric MDS goes back to Torgerson (1952, 1958) and can be divided
into two models.

@ distance model The objects aq, ..., a, are transformed into distances
di@, Z,gz 1,...,n.

@ spatial model The objects are represented by n points y1,...,yn in
r-dimensional space in such a way that the metric distances
dy(i,¢) = dp(yi,ye) of the objects approximate the distances d;
specified by the distance model as closely as possible.
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Metrische MDS

Formal formulation of the problem

o Let D = (d;y) denote the matrix of original element-wise distances d;,
and A = (6,(y4,yr)) denote the corresponding matrix of element-wise
distances for a lower-dimensional representation
Y=(y/, .y, € R

@ We are looking for representation Y that minimizes the cost or
STRESS function
> (i —6i)° .

i#]

@ Clearly, this issue is not unique, because we could shift all points by a
constant and obtain the same difference.

— It can be is useful to assume centered points around the origin.
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Classical metric MDS (cMDS)

@ The starting point is the matrix of squared Euclidean distances with
elements

do(i, l) = dz()’z’,Y@) = (yi — W)T(yz' —-ye), Hl=1,...,n.

@ Instead of finding Y, we can focus on finding the following matrix

B=YYT

@ for which it holds that

d?, = by + by — 2bj .
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Metrische MDS

Centering the distances first

o If we want to assume centering around the origin, which is the typical
approach, we need to start with centering our distance matrix!

o For that, we use a centering matrix:
1
H=1I,--1,1,.
n
Note: we could replace % with weights w;, Y ;" ; w; = 1 indicating the

importance of each row of distances. Then, we would have
H=1,—1,(wi,...,w,)".

@ Then, we continue with

B = —%HDH.
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Metrische MDS

Eigenvalue decomposition in MDS

Either way, we consider the eigenvalue decomposition of the matrix B:
B =PAP',

where

@ P is the matrix of the orthonormalized eigenvectors of B and

@ A is the diagonal matrix of the eigenvalues of B ordered by size.
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Metrische MDS

Calculating the new representation in MDS

If one defines the eigenvectors for the r positive eigenvalues of B
Y1 =+VA1P1,---,¥r = VA Pr and the matrix

Y:(y17"'aY7")a

it holds that: L
B=PA:A2P=YY'.

—Y = (y],...,,y,})7" is a representation of the objects and
the lines of Y correspond to the coordinates.

Note

Classical MDS (i.e. MDS using the euclidean distance) yields the same
results as PCA, see also . However, MDS can
also meaningfully be applied to distance matrices not generated under
Euclidean distance measure where this no longer holds.

= = = = = o2 t
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https://rich-d-wilkinson.github.io/MATH3030/6-mds.html

Metrische MDS

Equivalence of cMDS and PCA

@ PCA: Projection of the
observations onto a subspace so

T
. hat th ) ) )
' . that the maximum variance is
| iUl/ .
o o retained
H Z;e !
1
¢
Zif o Maximize
T _
a,Sa,, p=1,...,m.
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Equivalence of cMDS and PCA

° Find a subspace so that

x; the original distances are
\'wi, presgrved by the projection if
| possible

@ Minimize
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Equivalence of cMDS and PCA

e Explained variance (by H):

|
\ @ Residual variance:

1o R
I(H") = gz s — |
=1

o Total variance:

1 n
Ig=I= 2; il
=
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N = =< 1 0
Equivalence of cMDS and PCA

@ According to Pythagoras' theorem:
B + ||z — &l

@ Total variance =
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e Explained variance (by H):

@ Residual variance:

1< .
Z(Hl):;;Ejﬂwi—wﬂﬁ
=1

o Total variance:
1 & 9
Ie=Ip==) |
n <
=1

+ residual variance
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Equivalence of cMDS and PCA

e Explained variance (by H):

|
\ @ Residual variance:

1o R
I(H") = gz s — |
=1

=> Minimizing the distance criterion
and maximizing the variance n
criterion leads to the same result Ig=1,= 1 Z H%HZ
for the euclidean distance! n.=

o Total variance:
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Summary of cMDS

Goal: Determine a lower-dimensional representation from a distance matrix
D

@ Calculate the centering matrix H =1, — 1, (w1, ..., wy,
(mostly, w; = 1).

)T

@ Determine, for D denoting the matrix of squared euclidean distances

B = —%HDH.

© Carry out a spectral decomposition of B:

B = PAPT

@ Calculate the points in the lower dimensional representation Y.
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Small hands-on example of cMDS |

Figure 1: The Main Steps of Multidimensional Scaling: 1) Start with a distance matrix, 2) Trans-
forms the distance matrix into a set of factor scores, and 3) Plot the observations using their
factor scores. Here the distances on the map exactly recover the distances in the original matrix.

a b ¢ d Dim1 Dim 2 \
al 0 16 10 10 al|-8 O de
16
b|16 0 10 10 b| 8 0 @ |6
‘ ‘ o—+—o>
c c| 0 -6 b
10 10 0 12 10
d[10 1012 o dl o & Tc
Distance Matrix Factor scores Map

Source:https://personal.utdallas.edu/ herve/abdi-MDS-sage2022.pdf
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https://personal.utdallas.edu/~herve/abdi-MDS-sage2022.pdf

Small hands-on example of cMDS Il

Here, we have

0 16 10 10
16 0 10 10

Dewia = | 10 10 0 12
0

10 10 12

and a “weights vector”

0 256 100 100
256 0 100 100
100 100 0 144
100 100 144 0

w' =[.25 25 25 .25].

This results in the following centering matrix:

.75
—.25
—.15
—.25

H:
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Small hands-on example of cMDS IlI

Next, we calculate

64 —64 0 0
—64 64 0 0
0 0 36 —36

0 0 -36 36

B = —%HDH =

The eigen-decomposition of B gives

1
L 0
B—UAU with U=| ¥2 | | anda=| 1 "
0 -% 0 72
12
0 7
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Small hands-on example of cMDS IV

Which gives us the following lower-dimensional representation:

s -
2 —_—

0
128 \/674 0
e 0 V64 0
—_— —_— 2 —_—
Youas 0o JE || 0 v
2
72 0 \/%
0 2|
-8 0
| 8 0
B 0 —6
0 6
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Metrische MDS

Applied example: Criminality in the US

Table 1.1 Correlations of crime rates over 50 U.S. states

Crime Murder Rape  Robbery  Assault  Burglary  Larceny  Auto theft
Murder 1.00 0.52 0.34 0.81 0.28 0.06 0.11
Rape 0.52 1.00 0.55 0.70 0.68 0.60 0.44
Robbery 0.34 0.55 1.00 0.56 0.62 0.44 0.62
Assault 0.81 0.70 0.56 1.00 0.52 0.32 0.33
Burglary 0.28 0.68 0.62 0.52 1.00 0.80 0.70
Larceny 0.06 0.60 0.44 0.32 0.80 1.00 0.55
Auto theft 0.11 0.44 0.62 0.33 0.70 0.55 1.00
TS



Metrische MDS
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Metrische MDS
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Metrische MDS

lterative approach to solutions

Especially not performing classical MDS, a typical solution is to iteratively
solve the minimization of the cost or STRESS function by

@ Initializing a random lower-dimensional representation Y

@ Improving on it until the STRESS function is smaller some constant c.

The improvement can be carried out via isotonic (or monotonic) regression,
the technique of fitting a free-form line to a sequence of observations,
especially for non-metric MDS.
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Non-metric MDS

Non-metric MDS
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Nichtmetrische MDS

Non-metric MDS methods go back to Shepard (1962) and only assume
that there is a monotonic relationship between the similarity ranking of the
object pairs and the object distances.

The monotonicity condition is as follows:

(i,7) more similar than (k, k) = d; < d;;
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Non-metric MDS

Country 1 3 4 5 6 7 8 9 10 11
Brazil 1 -

Congo 2| 483 -

Cuba 3 528 456 -

Egypt 4 | 344 500 517 -

France 5| 472 400 4.11 478 -

India 6 | 450 483 4.00 583 344 -

Israel 7 383 333 3.61 4.67 400 4.11 -

Japan 8 350 3.39 294 3.83 422 450 483 -

China 9 | 239 400 550 439 3.67 4.11 3.00 417 -

USSR 10 | 3.06 3.39 544 439 5.06 450 4.17 461 572 -
USA 11 539 239 3.17 333 594 428 594 6.06 256 500 -
Jugoslavia 12 | 3.17 3.50 5.11 428 472 400 444 428 506 6.67 356 -

Hannah Kiimpel

23/28



Non-metric MDS
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Non-metric MDS

Htl Mss Chr Esn Stl Att Frn DG1 MT- Trm Chm Tit

Hitler 0

Mussolini 3 0

Churchill 4 6 0

Eisenhower 7 8 4 0

Stalin 3 5 6 8 0

Attlee 8 9 3 9 8 0
Franco 3 2 5 7 6 7 0
De Gaulle 4 4 3 5 6 5 4 0

Htl Mss Chr Esn Stl Att Frn DG1 MT- Trm Chm Tit
Mao Tse-Tung 8 9 8 9 6 9 8 7 0

Truman 9 9 5 4 7T 8 8 4 4 0
Chamberlin 4 5 5 4 7 2 2 5 9 5 0
Tito T8 2 il 8 3 26 4 ST )
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Non-metric MDS
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Non-metric MDS

Solution of non-metric MDS

The aim is to determine a representation of the objects that fulfills the
monotonicity condition in a space with the smallest possible dimensions.

Iteratively minimize the following STRESS function:

S(Y) = S wer (die — die)?
Zkzd d%é

— The most widely used method is that of Kruskal (1964).
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Non-metric MDS

Cool visualization

A really nice interactive visualization of MDS is given in the following
blog-post:

Visualizing MNIST: An Exploration of Dimensionality Reduction
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https://colah.github.io/posts/2014-10-Visualizing-MNIST/
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