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Motivation

Introducion

What is MDS? A technique for visualizing the similarity or
dissimilarity of data points in a low-dimensional space.

Key Features:

Dimensionality Reduction: Transforms complex, high-dimensional data
into a simpler, visually interpretable form (2D or 3D).

Distance Preservation: Aims to retain the original distances between
data points as accurately as possible.

Why Use MDS? for data visualization and exploratory data analysis,
It helps in understanding patterns and relationships in data.
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Motivation

The basic idea of MDS

Given
1 a set of n objects

2 the distances/dissimilarities dij between them

We want to find points in a lower dimensional space whose distances
δij are as close as possible to the dij .

If all distances of the original objects are quantitative in nature, this in
endeavour is more straightforward, since their distances are easily
measured by a metric such as the euclidean distance −→ metric MDS

In other cases (quantitative distances), one needs to resort to more
general dissimilarity measures to get the dijs −→ non-metric MDS

Hannah Kümpel Multivariate Verfahren 3 / 28



Metrische MDS

Metric MDS
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Metrische MDS

Metric MDS

The metric MDS goes back to Torgerson (1952, 1958) and can be divided
into two models.

distance model The objects a1, . . . , an are transformed into distances
diℓ, i, ℓ = 1, . . . , n.

spatial model The objects are represented by n points y1, . . . ,yn in
r-dimensional space in such a way that the metric distances
dp(i, ℓ) = dp(yi,yℓ) of the objects approximate the distances diℓ
specified by the distance model as closely as possible.
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Metrische MDS

Formal formulation of the problem

Let D = (diℓ) denote the matrix of original element-wise distances diℓ
and ∆ = (δp(yi,yℓ)) denote the corresponding matrix of element-wise
distances for a lower-dimensional representation
Y = (y⊤

1 , . . . , ,y
⊤
n )

⊤ ∈ Rnxr.

We are looking for representation Y that minimizes the cost or
STRESS function ∑

i ̸=j

(dij − δij)
2 .

Clearly, this issue is not unique, because we could shift all points by a
constant and obtain the same difference.

−→ It can be is useful to assume centered points around the origin.
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Metrische MDS

Classical metric MDS (cMDS)

The starting point is the matrix of squared Euclidean distances with
elements

d2(i, ℓ) = d2(yi,yℓ) = (yi − yℓ)
⊤(yi − yℓ), i, ℓ = 1, . . . , n .

Instead of finding Y, we can focus on finding the following matrix

B = Y Y T

for which it holds that

d2iℓ = bii + bℓℓ − 2biℓ .
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Metrische MDS

Centering the distances first

If we want to assume centering around the origin, which is the typical
approach, we need to start with centering our distance matrix!

For that, we use a centering matrix:

H = In − 1

n
1n1

⊤
n .

Note: we could replace 1
n with weights wi,

∑n
i=1wi = 1 indicating the

importance of each row of distances. Then, we would have
H = In − 1n(w1, . . . , wn)

⊤.

Then, we continue with

B = −1

2
HDH.
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Metrische MDS

Eigenvalue decomposition in MDS

Either way, we consider the eigenvalue decomposition of the matrix B:

B = PΛP⊤ ,

where
P is the matrix of the orthonormalized eigenvectors of B and

Λ is the diagonal matrix of the eigenvalues of B ordered by size.
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Metrische MDS

Calculating the new representation in MDS

If one defines the eigenvectors for the r positive eigenvalues of B
y1 =

√
λ1 p1, . . . ,yr =

√
λr pr and the matrix

Y = (y1, . . . ,yr) ,

it holds that:
B = PΛ

1
2Λ

1
2P = YY⊤ .

→ Y = (y⊤
1 , . . . , ,y

⊤
n )

⊤ is a representation of the objects and
the lines of Y correspond to the coordinates.

Note
Classical MDS (i.e. MDS using the euclidean distance) yields the same
results as PCA, see also Applied multivariate statistics. However, MDS can
also meaningfully be applied to distance matrices not generated under
Euclidean distance measure where this no longer holds.
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Metrische MDS

Equivalence of cMDS and PCA

H

xi

x̂i

xi′

x̂i′

PCA: Projection of the
observations onto a subspace so
that the maximum variance is
retained

Maximize

a⊤
p Sap , p = 1, . . . ,m .
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Metrische MDS

Equivalence of cMDS and PCA

H

xi

xi′

x̂i x̂i′

MDS: Find a subspace so that
the original distances are
preserved by the projection if
possible d (x̂i, x̂i′)

Minimize∑
i ̸=i′

(d (x̂i, x̂i′)− d (xi,xi′))
2
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Metrische MDS

Equivalence of cMDS and PCA

H

xi

G = 0
x̂i

H⊥

Explained variance (by H):

I(H) =
1

n

n∑
i=1

∥x̂i∥2

Residual variance:

I(H⊥) =
1

n

n∑
i=1

∥xi − x̂i∥2

Total variance:

IG = I0 =
1

n

n∑
i=1

∥xi∥2
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Metrische MDS

Equivalence of cMDS and PCA

H

xi

G = 0
x̂i

H⊥

Explained variance (by H):

I(H) =
1

n

n∑
i=1

∥x̂i∥2

Residual variance:

I(H⊥) =
1

n

n∑
i=1

∥xi − x̂i∥2

Total variance:

IG = I0 =
1

n

n∑
i=1

∥xi∥2
According to Pythagoras’ theorem:
∥xi∥2 = ∥x̂i∥2 + ∥xi − x̂i∥2

Total variance = explained variance + residual variance
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Metrische MDS

Equivalence of cMDS and PCA

H

xi

G = 0
x̂i

H⊥

Explained variance (by H):

I(H) =
1

n

n∑
i=1

∥x̂i∥2

Residual variance:

I(H⊥) =
1

n

n∑
i=1

∥xi − x̂i∥2

Total variance:

IG = I0 =
1

n

n∑
i=1

∥xi∥2

⇒ Minimizing the distance criterion
and maximizing the variance
criterion leads to the same result
for the euclidean distance!
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Metrische MDS

Summary of cMDS

Goal: Determine a lower-dimensional representation from a distance matrix
D

1 Calculate the centering matrix H = In − 1n(w1, . . . , wn)
⊤

(mostly, wi =
1
n).

2 Determine, for D denoting the matrix of squared euclidean distances

B = −1

2
HDH.

3 Carry out a spectral decomposition of B:

B = PΛP T

4 Calculate the points in the lower dimensional representation Y.
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Metrische MDS

Small hands-on example of cMDS I

Source:https://personal.utdallas.edu/~herve/abdi-MDS-sage2022.pdf
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Metrische MDS

Small hands-on example of cMDS II

Here, we have

DEuclid =


0 16 10 10
16 0 10 10
10 10 0 12
10 10 12 0

 , D =


0 256 100 100

256 0 100 100
100 100 0 144
100 100 144 0


and a “weights vector”

w⊤ =
[
.25 .25 .25 .25

]
.

This results in the following centering matrix:

H =


.75 −.25 −.25 −.25

−.25 .75 −.25 −.25
−.15 −.25 .75 −.25
−.25 −.25 −.25 .75

 .
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Metrische MDS

Small hands-on example of cMDS III

Next, we calculate

B = −1

2
HDH =


64 −64 0 0

−64 64 0 0
0 0 36 −36
0 0 −36 36


The eigen-decomposition of B gives

B = UΛU⊤ with U =


− 1√

2
0

1√
2

0

0 − 1√
2

0 1√
2

 and Λ =

[
128 0
0 72

]
.
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Metrische MDS

Small hands-on example of cMDS IV

Which gives us the following lower-dimensional representation:

Y = UΛ
1
2 =


−
√

128
2 0√

128
2 0

0 −
√

72
2

0
√

72
2

 =


−
√
64 0√
64 0

0 −
√
36

0
√
36



=


−8 0
8 0
0 −6
0 6

 .
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Metrische MDS

Applied example: Criminality in the US
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Metrische MDS
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Metrische MDS
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Metrische MDS

Iterative approach to solutions

Especially not performing classical MDS, a typical solution is to iteratively
solve the minimization of the cost or STRESS function by

1 Initializing a random lower-dimensional representation Y

2 Improving on it until the STRESS function is smaller some constant c.

The improvement can be carried out via isotonic (or monotonic) regression,
the technique of fitting a free-form line to a sequence of observations,
especially for non-metric MDS.
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Non-metric MDS

Non-metric MDS
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Non-metric MDS

Nichtmetrische MDS

Non-metric MDS methods go back to Shepard (1962) and only assume
that there is a monotonic relationship between the similarity ranking of the
object pairs and the object distances.

The monotonicity condition is as follows:

(i, ĩ) more similar than (k, k̃) ⇒ dĩi < dkk̃
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Non-metric MDS
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Non-metric MDS
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Non-metric MDS
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Non-metric MDS
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Non-metric MDS

Solution of non-metric MDS

The aim is to determine a representation of the objects that fulfills the
monotonicity condition in a space with the smallest possible dimensions.

Iteratively minimize the following STRESS function:

S(Y) =

√∑
k<ℓ (dkℓ − d̂kℓ)2∑

k<ℓ d
2
kℓ

.

→ The most widely used method is that of Kruskal (1964).
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Non-metric MDS

Cool visualization

A really nice interactive visualization of MDS is given in the following
blog-post:

Visualizing MNIST: An Exploration of Dimensionality Reduction
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